PVC的混料工艺决定着PVC产品的质量,本文章分为两部分阐述,本文为第一部分;
一、前言
u-PVC即硬质PVC制品,包括管材,管件,异型材等等。这其中又以异型材在户外作结构材料使用,对产品的耐候性能和材料要求更高;同时因断面复杂,对配方加工性能的要求也相当苛刻。这些都决定了异型材配方非常复杂,以u-PVC异型材为例,除了主料PVC外,通常还包括复合稳定剂(包括稳定剂、润滑剂、紫外线吸收剂和抗氧剂等)、抗冲改性剂(如CPE或AIM)、加工助剂(ACR)、钛白粉(TiO2)、填料(常用碳酸钙)与色料等[1],原料品种通常在十多种以上。另一方面,从加工工艺来讲,随着挤出机技术的进步,具有很强塑化能力的双螺杆挤出机已基本取代了单螺杆挤出机。u-PVC异型材和管材都可以由混合粉料经双螺杆挤出机直接挤出成最终制品。由于双螺杆挤出的生产省略了单螺杆挤出中的挤出造料环节,因此混合料的质量将很大程度上影响到后期的生产是否能正常进行,产品质量是否良好。这些都对配料质量提出了严格要求。因此,如何科学混料并做好混料质量的监控,是做为制品生产企业必须重视的工作。本文将以科学的异型材配方为例,阐述其混料工艺的作用和原理,并分析如何监控混料质量。
二、混料的作用与原理
u-PVC配方料的混配通常要经过热混和冷混两个阶段,混合好的混配料叫做干混料。所谓热混,是指将混合物加热到软化温度或软化温度以上所进行的掺混过程,而冷混即热混料在冷混锅中,通过叶片低速搅动,其散发的热量通过冷混锅夹套中冷却水带走,直至将原料降到设定温度以下的过程。经过热混冷混的干混料,需静置一段时间“熟化”后即可使用。热混和冷混作用有四个方面:第一是使原料各组份在空间上均匀分布,取得一定的均一性[2],显然这是各组分充分发挥作用的基础;第二是通过热混,使PVC粒子有一个从原态到破碎微熔再到重新凝结聚集的过程,使干混料取得一定的预塑化效果,从混合状态的描述法来说,即获取一定的分散程度[3];第三是使干混料经过混料过程后,消除太小粒径组份,使得干混料整体的粒径分布相对较大而且集中,提高了干混料的表观密度和流动性,这不仅利于干混料的稳定输送,同时也可提高产量;第四是通过热混,尽可能排除原料中的水份和低挥发组分,消除这些组份对产品质量的影响。静置干混料的目的,是消除混料过程中产生的静电,并进一步提高干混料的表观密度和流动性。
以常见异型材配方料为例,其配方组成中PVC和CPE均属大颗粒成分(平均粒径Dav为150~200μm),复合稳定剂以颗粒或片状加入后会被破碎为小颗粒,但在混料条件下不至于小到碳酸钙和钛白粉的级别(10μm以下),加工助剂ACR虽然粒径也较小,但配方中含量很少,同时熔点低于热混温度,会在热混中熔融,因此配方中真正要考虑的小粒径组份是碳酸钙和钛白粉。如图1是某一异型材配方各原料的粒径分布图(图中D10是指100份粉料中,有10%(体积比)的部分,其粒径所低于的粒径值,以此类推。Dav是指平均粒径)。从图1可以很明显地说明配方料的粒径可简单分为两个数量级,而小粒径组份正是希望通过热混而加以消除的。
图1中D10指累计10%的组份所低于的粒径值,D25指累计25%的组份所低于的粒径值,以此类推。Dav即平均粒径。热混过程中的热源通常是搅拌叶片高速剪切所产生的摩擦热。分析热混过程中原料状态的具体变化过程是:在高速搅拌机的作用下,占绝对比例的PVC大颗粒被高速剪切作用所破碎,PVC颗粒比表面积增加形成较强的静电吸附作用;另一方面,配方中低熔点的润滑剂、加工助剂等也会在温度上升过程中逐渐熔化,粘附于PVC颗粒周围,起着PVC与无机小颗粒之间粘接剂的作用;再有,PVC颗粒在最初的破碎后,随着温度上升而逐渐膨胀,当温度超过其玻璃化温度(Tg)87℃时,PVC颗粒从外到内逐渐软化,并达到一定的预塑化程度,变软甚至微熔的PVC颗粒也有利于小粒径无机颗粒的粘附,所有这些因素共同作用的结果就是:随着混料过程的进行,配方中的小粒径组份碳酸钙和钛白粉颗粒将逐渐粘附并镶嵌到PVC颗粒周围,使得PVC颗粒的粒径从破碎变小又逐渐增大,配方中大颗粒CPE的状态变化类似PVC,最终使得配方中的小粒径组份逐渐消失,不同粒径的共混体最终变成粒径较大而均匀的粉体。如图2中左图是各种原料按配方称量后用小勺简单搅拌混合的结果,右图是经正常热、冷混后的干混料。二者放大比例相同。
利用激光粒度分析仪分析不同混料温度下混合料的粒径分布情况,结果如图3。
图3中a图是所有原料未经过混合的情况,可以看到粒径在10μm附近的颗粒比较多,这是配方中ACR、碳酸钙与钛白粉组成的小粒径组份,随着混料效果的提高,小颗粒逐渐附聚到大PVC颗粒周围,小粒径组份的含量越来越少,到图d时,10μm附近的颗粒比例已经几乎消失;另一方面,在图a中,粒径在150μm附近的峰值很高,检测时出现的频率达21%,这是PVC原始颗粒的粒径未受到影响的情况,但到图b,该峰值明显降低,而其左测100μm左右低粒径颗粒的比例明显增加,说明PVC颗粒部分被高速剪切力所破碎,随着混料效果的加强,小粒子逐渐附聚到PVC颗粒周围,PVC颗粒的粒径又逐渐加大,正如图c和图d所显示的情况。图3所反应的粉料粒径变化的过程正好也说明了上述的混料原理[4]。
赛诺新材,15年积淀,聚乙烯蜡 品牌生产商,蓝海股权机构挂牌上市企业。专注从事润滑分散体系的研发生产,包含聚乙烯蜡、氧化聚乙烯蜡、聚丙烯蜡、EBS、硬脂酸锌 等助剂的研发、生产、应用工作。咨询热线: 400-8788532。
作者:赛诺新材 来源:www.pewax88.com。